Entropy and Its Correlations with Other Related Quantities

نویسندگان

  • Jing Wu
  • Zengyuan Guo
چکیده

In order to find more correlations between entropy and other related quantities, an analogical analysis is conducted between thermal science and other branches of physics. Potential energy in various forms is the product of a conserved extensive quantity (for example, mass or electric charge) and an intensive quantity which is its potential (for example, gravitational potential or electrical voltage), while energy in specific form is a dissipative quantity during irreversible transfer process (for example mechanical or electrical energy will be dissipated as thermal energy). However, it has been shown that heat or thermal energy, like mass or electric charge, is conserved during heat transfer processes. When a heat transfer process is for object heating or cooling, the potential of internal energy U is the temperature T and its potential “energy” is UT/2 (called entransy and it is the simplified expression of thermomass potential energy); when a heat transfer process is for heat-work conversion, the potential of internal energy U is (1 − T0/T), and the available potential energy of a system in reversible heat interaction with the environment is U − U0 − T0(S − S0), then T0/T and T0(S − S0) are the unavailable potential and the unavailable potential energy of a system respectively. Hence, entropy is related to the unavailable potential energy per unit environmental temperature for heat-work conversion during reversible heat interaction between the system and its environment. Entropy transfer, like other forms of potential energy transfer, is the product of the heat and its potential, the reciprocal of temperature, although it is in form of the quotient of the heat and the temperature. Thus, the physical essence of entropy transfer is the unavailable OPEN ACCESS Entropy 2014, 16 1090 potential energy transfer per unit environmental temperature. Entropy is a non-conserved, extensive, state quantity of a system, and entropy generation in an irreversible heat transfer process is proportional to the destruction of available potential energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlated energy landscape model for finite, random heteropolymers.

In this paper, we study the role of correlations in the energy landscape of a finite random heteropolymer by developing the mapping onto the generalized random energy model ~GREM! proposed by Derrida and Gardner @J. Phys. C 19, 2253 ~1986!# in the context of spin glasses. After obtaining the joint distribution for energies of pairs of configurations, and by calculating the entropy of the polyme...

متن کامل

Response to "Comment on 'Zero and negative energy dissipation at information-theoretic erasure'"

We prove that statistical information theoretic quantities, such as information entropy, cannot generally be interrelated with the lower limit of energy dissipation during information erasure. We also point out that, in deterministic and error-free computers, the information entropy of memories does not change during erasure because its value is always zero. On the other hand, for information-t...

متن کامل

Entropy and Its Discontents: A Note on Definitions

The routine definitions of Shannon entropy for both discrete and continuous probability laws show inconsistencies that make them not reciprocally coherent. We propose a few possible modifications of these quantities so that 1) they no longer show incongruities, 2) they go one into the other in a suitable limit as the result of a renormalization. The properties of the new quantities would slight...

متن کامل

Entropy generation calculation for laminar fully developed forced flow and heat transfer of nanofluids inside annuli

In this paper, second law analysis for calculations of the entropy generation due to the flow andheat transfer of water-Al2O3 and ethylene glycol-Al2O3 nanofluids inside annuli is presented. Thephysical properties of the nanofluids are calculated using empirical correlations. Constant heatfluxes at inner surface of the annuli are considered and fully developed condition for fluid flowand heat t...

متن کامل

Spreading of correlations and entanglement after a quench in the Bose-Hubbard model

We investigate the spreading of information in a Bose-Hubbard system after a sudden parameter change. In particular, we study the time-evolution of correlations and entanglement following a quench. The investigated quantities show a light-cone like evolution, i.e. the spreading with a finite velocity. We discuss the relation of this veloctiy to other characteristic velocities of the system, lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014